设A是N阶实矩阵,证明:若AA‘=0则A=0

设A是N阶实矩阵,证明:若AA‘=0则A=0

题目
设A是N阶实矩阵,证明:若AA‘=0则A=0
答案
令B = A',则 B'B = 0
所以对任意 n维列向量x 都有
x'B'Bx = 0
即有 (Bx)'Bx = 0.
所以 Bx = 0
取 ei = (0,...,0,1,0,...,0)',第i个分量等于其余为0的n维向量.i=1,2,...,n
则 Bei = 0.
而 Bei 等于 B 的第i列构成的列向量.i=1,2,...,n
所以 B = 0.
故 A = 0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.