证明罗尔定理推论:若在(a,b)内f(n)(x)【n阶导数】不为零,则方程f(x)=0在(a,b)内最多有n个实数根.(11分)
题目
证明罗尔定理推论:若在(a,b)内f(n)(x)【n阶导数】不为零,则方程f(x)=0在(a,b)内最多有n个实数根.(11分)
答案
罗尔定理:f(x)在[a,b]连续,在(a,b)可导,如果f(a)=f(b),则f'(x)至少有一个根.特别的,如果上述f(a)=f(b)=0,也就是f(x)在[a,b]有两个根,那么f'(x)在(a,b)至少有一个根.反之,如果f'(x)在(a,b)没有根,f(x)在[a,b]就不会...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点