等边三角形的内切圆半径、外接圆半径和高的比是_.
题目
等边三角形的内切圆半径、外接圆半径和高的比是______.
答案
如图,连接OD、OE;
因为AB、AC切圆O与E、D,
所以OE⊥AB,OD⊥AC,
又因为AO=AO,
EO=DO,
所以△AEO≌△ADO(HL),
故∠DAO=∠EAO;
又∵△ABC为等边三角形,
∴∠BAC=60°,
∴∠OAC=60°×
=30°,
∴OD:AO=1:2.
有OF=OD,
所以AF=2+1=3,
所以内切圆半径、外接圆半径和高的比是1:2:3.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点