如图,在Rt△ABC中,∠ACB=90°,∠BAC=60°,DE垂直平分BC,垂足为D,交AB于点E.又点F在DE的延长线上,且AF=CE.求证:四边形ACEF是菱形.

如图,在Rt△ABC中,∠ACB=90°,∠BAC=60°,DE垂直平分BC,垂足为D,交AB于点E.又点F在DE的延长线上,且AF=CE.求证:四边形ACEF是菱形.

题目
如图,在Rt△ABC中,∠ACB=90°,∠BAC=60°,DE垂直平分BC,垂足为D,交AB于点E.又点F在DE的延长线上,且AF=CE.求证:四边形ACEF是菱形.
答案
证明:∵∠ACB=90°,DE是BC的中垂线,
∴DE⊥BC,
又∵AC⊥BC,
∴DE∥AC,
又∵D为BC中点,DF∥AC,
∴DE是△ABC的中位线,
∴E为AB边的中点,
∴CE=AE=BE,
∵∠BAC=60°,
∴△ACE为正三角形,
∵∠AEF=∠DEB=∠CAB=60°,
而AF=CE,又CE=AE,
∴AE=AF,
∴△AEF也为正三角形,
∴∠CAE=∠AEF=60°,
∴AC
.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.