如图,CE、CB分别是△ABC、△ADC的中线,且AB=AC.求证:CD=2CE.

如图,CE、CB分别是△ABC、△ADC的中线,且AB=AC.求证:CD=2CE.

题目
如图,CE、CB分别是△ABC、△ADC的中线,且AB=AC.求证:CD=2CE.
答案
证明:延长CE到F,使EF=CE,连接FB.
∵CE是△ABC的中线,
∴AE=EB,
又∵∠AEC=∠BEF,
∴△AEC≌△BEF,(SAS)
∴∠A=∠EBF,AC=FB.
∵AB=AC,
∴∠ABC=∠ACB,
∴∠CBD=∠A+∠ACB=∠EBF+∠ABC=∠CBF;
∵CB是△ADC的中线,
∴AB=BD,
又∵AB=AC,AC=FB,
∴FB=BD,
又CB=CB,
∴△CBF≌△CBD(SAS),
∴CD=CF=CE+EF=2CE.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.