关于整除的数学题
题目
关于整除的数学题
1.abcde是一个五位数,它是九的倍数,其中,abcd是四的倍数,那么,abcde的最小值是多少?(不同的字母代表不同的数字)
2.在25¥79这个数中,¥代表一个数字,使这个五位数能被11整除,¥应代表什么?
3.一个五位数“4x7y5”,它可以同时是11与25的倍数,求这个五位数.
答案
第1题:
因为:
若一个整数的所有数位上的数字之和能被9整除,则这个数就能被9整除.
若一个整数的最后两位能被4整除,则这个数就能被4整除.
所以:
万位a=1,个位e=8,其余各位是0时为最小值.
这个五位数是10008.
第2题:
因为:
若一个整数的奇位(从个位开始)数字之和与偶位数字之和的差(差可用大数减去小数,但是,在求被11除后所得余数问题时,只能用奇位数字之和减去偶位数字之和)能被11整除,则这个数能被11整除.
所以:
奇位数字之和是9+¥+2=11+¥
偶位数字之和是7+5=12
由于¥只能是一位数,
因此(11+¥)-12=0,得¥=1
第3题:
因为:
若一个整数的奇位(从个位开始)数字之和与偶位数字之和的差(差可用大数减去小数,但是,在求被11除后所得余数问题时,只能用奇位数字之和减去偶位数字之和)能被11整除,则这个数能被11整除.
若一个整数的最后两位能被25整除,则这个数就能被25整除.
所以:
由于5+7+4=16
因此x+y=5或x+y=16
又由于y等于2或7(最后两位数是25或75时能被25整除)
因此当y=2时,x=3;当y=7时,x=9
这个五位数是43725或49775
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点
- 伤仲永中的“父异焉”的“焉”词类活用是什么和什么活用?
- 农谚说“种地不上粪,等于瞎胡混”又说“粪大水勤,不用问人”这两种谚语是否都有一定的科学道理?
- 动词过去式变化规则是
- 已知完全竞争厂商的长期成本函数为LTC=Q3-12Q2+40Q,计算当市场价格P=100时,厂商实现最大利润的产量,利润
- 2分之(-3x+1)=4分之【-7(-3x-6)】
- 在平面直角坐标系中,有若干个整数点,横坐标和纵坐标都为整数,其顺序按方向排列如{1,0},{2,0},{2,1},
- (a2+2a+1)+(b2+4b+4)=0 a2+2a,b2+4b运算方式,救救我
- 在STM32串口接收程序里 USART_GetFlagStatus(USART1,USART_FLAG_ORE)==RESET
- 台风危害这么大,难道不能在它形成之前把它摧毁吗?
- (2000•河南)如图,在等腰Rt△ABC中,∠C=90°,D是斜边AB上任一点,AE⊥CD于E,BF⊥CD交CD的延长线于F,CH⊥AB于H,交AE于G,求证:BD=CG.