设a,b∈(-π/2,π/2),tana、tanb是一元二次方程x^2+3根号3x+4=0的两个根,

设a,b∈(-π/2,π/2),tana、tanb是一元二次方程x^2+3根号3x+4=0的两个根,

题目
设a,b∈(-π/2,π/2),tana、tanb是一元二次方程x^2+3根号3x+4=0的两个根,
设A、B∈(-π/2,π/2),tanA、tanB是一元二次方程X²+3√3X+4=0的两个根,求A+B
答案为60度或-120度 要舍掉60度 请问为何
答案
解由tanA、tanB是一元二次方程X²+3√3X+4=0的两个根
知tanA+tanB=-3√3<0
tanAtanB=4>0
知tanA,tanB都是负值
又由A、B∈(-π/2,π/2),
故A,B都是负角
故A+B是负角,
故正角60°舍去.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.