关于x的方程(a2-4a+5)x2+2ax+4=0: (1)试证明无论a取何实数这个方程都是一元二次方程; (2)当a=2时,解这个方程.
题目
关于x的方程(a2-4a+5)x2+2ax+4=0:
(1)试证明无论a取何实数这个方程都是一元二次方程;
(2)当a=2时,解这个方程.
答案
(1)a2-4a+5=(a2-4a+4)+1=(a-2)2+1,
∵(a-2)2≥0,
∴(a-2)2+1≠0,
∴无论a取何实数关于x的方程(a2-4a+5)x2+2ax+4=0都是一元二次方程;
(2)当a=2时,原方程变为x2+4x+4=0,
解得x1=x2=-2.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点