设f(x)在[0,1]上连续,且x*f(x)在0到1上的定积分等于f(x)在0到1上的定积分.证明存在y属于0到1使
题目
设f(x)在[0,1]上连续,且x*f(x)在0到1上的定积分等于f(x)在0到1上的定积分.证明存在y属于0到1使
f(x)在0到y上的定积分为0.
答案
我不知道我证得对不对,我给你我的思路:设G(t)=[xf(x)-x]dt,被积区域是[0,t].根据题意有G(1)=0;G(0)=0,G(t)闭区间连续,根据罗尔定理存在一点c属于(0,1),使得G(t)的导数等于0,可得(c-1)f(c)=0.进一步可得f(c)=...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点