求y=cos²x+2根号3sinxcosx-sin²x的最大值最小值.
题目
求y=cos²x+2根号3sinxcosx-sin²x的最大值最小值.
答案
∵y
=(cosx)^2+2√3sinxcosx-(sinx)^2
=[(cosx)^2-(sinx)^2]+√3sin2x
=cos2x+√3sin2x
=2[(1/2)cos2x+(√3/2)sin2x]
=2(sin30°2cos2x+cos30°sin2x)
=2sin(30°+2x).
∴y的最大值是2,最小值是-2.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点