求lim(x→0)ln[1+e^x(sinx)^2]/√(1+x^2)-1
题目
求lim(x→0)ln[1+e^x(sinx)^2]/√(1+x^2)-1
答案
在x趋于0的时候,
e^x(sinx)^2也趋于0,
那么
ln[1+e^x(sinx)^2]就等价于e^x(sinx)^2,
而此时e^x趋于1,所以ln[1+e^x(sinx)^2]就等价于(sinx)^2
而分母√(1+x^2)-1等价于0.5x^2
所以
原极限
=lim(x→0) (sinx)^2 / (0.5x^2)
=lim(x→0) 2(sinx)^2 / x^2 显然由重要极限知道lim(x→0) sinx / x=1
= 2
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点