矩阵A的平方等于矩阵A,那么矩阵A有什么性质?

矩阵A的平方等于矩阵A,那么矩阵A有什么性质?

题目
矩阵A的平方等于矩阵A,那么矩阵A有什么性质?
答案
1.A^2=A,即是A^2-A=0,即A(A-E)=0,所以R(A)+(A-E)小于或等于n,
又因为A+(E-A)=E,所以R(A)+(A-E)=R(A)+R(E-A)大于或等于n,
于是R(A)+(A-E)=n.
2.由A(A-E)=0可知A-E的每一列都是Ax=0的解,类似地可以知道,A的每一列也都是(A-E)x=0的解.
3.A的特征值只能是1或0.证明如下:设λ是A的任意一特征值,α是其应对的特征向量,则有
Aα=λα,于是(A^2-A)α=(λ^2-λ)α=0,因为α不是零向量,于是只能有λ^2-λ=0,所以λ=1或λ=0
4.矩阵A一定可以对角化.因为A-E的每一非零列都是Ax=0的解,所以A-E的每一个非零列都是λ=0的特征向量,同理A 的每一个非零列都是λ=1的特征向量,再由R(A)+(A-E)=n可知矩阵A有n个线性无关的特征向量,所以A可以对角化.
暂时只能想到 这些了,希望对你有所帮助.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.