已知【x+√(x²+2014)】【y+√(y²+2014)】=2014,求x²-3xy-4y²-6x-6y+58的值

已知【x+√(x²+2014)】【y+√(y²+2014)】=2014,求x²-3xy-4y²-6x-6y+58的值

题目
已知【x+√(x²+2014)】【y+√(y²+2014)】=2014,求x²-3xy-4y²-6x-6y+58的值
答案
令:x+√(x²+2014)=P,y+√(y²+2014)=Q
则 (P-x)²=x²+2014...(1)
(Q-y)²=y²+2014...(2)
PQ=2014.(3)
由(1)得:P²-2Px=2014=PQ (4)
由(2)得:Q²-2Qy=2014=PQ (5)
由于PQ=2014≠0,P≠0,Q≠0
所以,
由(4)得:P-2x=Q
由(5)得:Q-2y=P
将上二式左右分别相加得:P+Q-2(x+y)=P+Q
所以x+y=0
于是
x²-3xy-4y²-6x-6y+58
=(x-4y)(x+y)-6(x+y)+58
=(x+y)(x-4y-6)+58
=0+58
=58
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.