用数字说明:长方形,正方形和圆这三个图形的周长相等时,他们种面积最大的是()那怎么用数字表示呢
题目
用数字说明:长方形,正方形和圆这三个图形的周长相等时,他们种面积最大的是()那怎么用数字表示呢
答案
长方形,正方形和圆这三个图形的周长相等时,他们种面积最大的是(圆)
圆面积最大
1.周长为L(常数)的矩形中正方形面积最大.
证明:设矩形长为x,则宽为(L-2x)/2=(L/2-x)
面积y=x*(L/2-x)=-x^2+Lx/2,这个二次函数
在x=L/4时有最大值
∴矩形长L/4,宽为(L-2x)/2=(L/2-x)=L/4,
∴矩形中正方形面积最大
2.奇妙的证明:周长相等的所有平面图形中,圆的面积最大.
我首先要证明,面积最大的图形满足一个性质:一条平分周长的直线(暂且把它叫做周长平分线),一定也平分面积.因为,如果不平分面积的话,那么我总可以把面积较大的那块翻到另一边去,使得周长不变,而面积增大(如左图,红色曲线围成的面积大于蓝色曲线).好了,接下来,我要再证明面积最大的图形满足第二条性质:周长平分线与曲线的两个交点和曲线上任意一点构成的三角形,必然是直角三角形.因为,如果它不是直角三角形,我可以把他拉伸或压缩一下,使它成为直角三角形,这样新三角形的面积大于原三角形的面积(证明省略,主要使用S=absinθ/2),而图形其他部分面积不变,这样面积就扩大了.因此,面积最大的图形满足上述两条性质,我们就不难推出它是圆了.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点