求经过点A(-2,-4),且与直线l:x+3y-26=0相切于点B(8,6)的圆的方程.

求经过点A(-2,-4),且与直线l:x+3y-26=0相切于点B(8,6)的圆的方程.

题目
求经过点A(-2,-4),且与直线l:x+3y-26=0相切于点B(8,6)的圆的方程.
答案
设圆为x2+y2+Dx+Ey+F=0,
连接切点与圆心的直线和半径垂直得,
6+
E
2
8+
D
2
=3
即3D-E+36=0
依题意有方程组
3D−E=−36
2D+4E−F=20
8D+6E+F=−100

D=−11
E=3
F=−30

∴圆的方程为x2+y2-11x+3y-30=0.
由已知中圆经过点A(-2,-4),且与直线l:x+3y-26=0相切于(8,6),我们可以设出圆的方程,然后将两点坐标代入结合圆心到直线l的距离等于半径,构造方程组,解方程组即可求出圆的方程.

直线与圆的位置关系.

本题考查的知识点是直线与圆的位置关系,其中根据圆过已知的两个点,及与直线相切,构造方程组是解答本题的关键.

举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.