如图,在△ABC中,∠BAC的平分线与BC的垂直平分线PQ相交于点P,过点P分别作PN⊥AB于N,PM⊥AC于点M,求证:BN=CM.
题目
如图,在△ABC中,∠BAC的平分线与BC的垂直平分线PQ相交于点P,过点P分别作PN⊥AB于N,PM⊥AC于点M,求证:BN=CM.
答案
证明:连接PB,PC,
∵AP是∠BAC的平分线,PN⊥AB,PM⊥AC,
∴PM=PN,∠PMC=∠PNB=90°,
∵P在BC的垂直平分线上,
∴PC=PB,
在Rt△PMC和Rt△PNB中
,
∴Rt△PMC≌Rt△PNB(HL),
∴BN=CM.
连接PB,PC,根据角平分线性质求出PM=PN,根据线段垂直平分线求出PB=PC,根据HL证Rt△PMC≌Rt△PNB,即可得出答案.
全等三角形的判定与性质;角平分线的性质;线段垂直平分线的性质.
本题考查了全等三角形的性质和判定,线段垂直平分线性质,角平分线性质等知识点,主要考查学生运用定理进行推理的能力.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点