函数f(x)=1/2x2−lnx的最小值为_.

函数f(x)=1/2x2−lnx的最小值为_.

题目
函数f(x)=
1
2
x
答案
∵函数f(x)=
1
2
x2−lnx

f′(x)=x 
1
x
(x>0)
f′(x)=x 
1
x
=0
解得x=1
∵当x∈(0,1)时,f′(x)<0,当x∈(1,+∞)时,f′(x)>0
故在区间(0,1)上,函数f(x)为减函数,在区间(1,+∞)上,函数f(x)为增函数,
则当x=1时,函数取最小值
1
2

故答案为:
1
2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.