连续型随机变量的分布函数的连续性
题目
连续型随机变量的分布函数的连续性
概率统计课本对连续型随机变量的定义如下:
对于随机变量X的分布函数F(X),存在非负函数f(x),使得对于任意实数x,有F(X)=∫[-∞→x]f(t)dt,则称X为连续型随机变量.
如何证明F(X)是连续函数.
答案
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点