设函数f(x)=ab,其中向量a=(m,cosx),b=(1+sinx,1),x属于R

设函数f(x)=ab,其中向量a=(m,cosx),b=(1+sinx,1),x属于R

题目
设函数f(x)=ab,其中向量a=(m,cosx),b=(1+sinx,1),x属于R
且f(派/2)=2 (1)求实数m的值.(2)求函数f(x)的最小值相应的x的集合; (3)求f(x)的单调递增区间
答案
① x∈R f(x)=a*b =m+msinx+cosx
f(π/2)=2 m+msinπ/2+coxπ/2=2 解得m=1
② f(x)min=1-√2
解得x=5π/4+2kπ ③令-π/2+2kπ≤x≤π/2+2kπ 解得-3π/4+2kπ≤x≤π/4+2kπ
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.