实数x、y满足4x^2-5xy+4y^2=5,设S=x^2+y^2,求S的最值

实数x、y满足4x^2-5xy+4y^2=5,设S=x^2+y^2,求S的最值

题目
实数x、y满足4x^2-5xy+4y^2=5,设S=x^2+y^2,求S的最值
答案
x=√s cosB y=√s sinB
4x^2-5xy+4y^2=5
4(√s cosB)^2-5√s cosB*√s sinB+4(√s sinB)^2=5
4s (cosB)^2-5s sinBcosB+4s (sinB)^2=5
4s-5s/2 sin2B=5
因为:-1《sin2B《1
所以:s=5/(4-5/2 sin2B)∈[10/13,10/3]
所以s的最大值为:10/3,最小值为:10/13
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.