三个平面两两相交且交线不重合,如何证明三交线交于一点或两两平行
题目
三个平面两两相交且交线不重合,如何证明三交线交于一点或两两平行
答案
三个平面两两相交得三条直线,求证:这三条直线相交于同一点或两两平行.
已知:平面α∩平面β=a,平面β∩平面γ=b,平面γ∩平面α=c.
求证:a,b,c相交于同一点,或a‖b‖c.
证明:∵α∩β=a,β∩γ=b
∴a,bβ
∴a,b相交或a‖b.
(1)a,b相交时,不妨设a∩b=P,即P∈a,P∈b
而a,bβ,aα
∴P∈β,P∈α,故P为α和β的公共点
又∵α∩γ=c
由公理2知P∈c
∴a,b,c都经过点P,即a,b,c三线共点.
(2)当a‖b时
∵α∩γ=c且aα,aγ
∴a‖c且a‖b
∴a‖b‖c
故a,b,c两两平行.
由此可知a,b,c相交于一点或两两平行.
说明:此结论常常作为定理使用,在判断问题中经常被使用.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点