求经过两条直线x+3y-10=0和x-2y=0的交点,且到原点的距离为4的直线方程.

求经过两条直线x+3y-10=0和x-2y=0的交点,且到原点的距离为4的直线方程.

题目
求经过两条直线x+3y-10=0和x-2y=0的交点,且到原点的距离为4的直线方程.
答案
先解出两条直线x+3y-10=0和x-2y=0的交点为:(4,2)
设直线方程为:y=kx+b,将交点代入方程有:2=4k+b,则b=2-4k
根据直线到原点的距离公式有d=|b|/根号(k²+1)=4,即b²=16k²+16
联解方程有:k=-3/4,b=5
则方程为:y=-3x/4+5
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.