已知经过点P(2,0),斜率为4/3的直线和抛物线y^2=2x相交于A,B两点,设线段AB的中点为M,求点M的坐标.要用参数的方法!
题目
已知经过点P(2,0),斜率为4/3的直线和抛物线y^2=2x相交于A,B两点,设线段AB的中点为M,求点M的坐标.要用参数的方法!
答案
由题意可得直线参数方程为x=2+3t,y=4t,为求交点坐标先解方程(4t)^2=2*(2+3t),即8t^2-3t-2=0,设其解为t1、t2,则对应有A=(2+3t1,4t1),B=(2+3t2,4t2),根据韦达定理,AB中点M所对应的参数为t=(t1+t2)/2=3/16,所以Mx=2+3*(...
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点