如果方程x2+y2+Dx+Ey+F=0(D2+E2-4F>0)所表示的曲线关于直线y=x对称,那么必有( ) A.D=E B.D=F C.E=F D.D=E=F
题目
如果方程x2+y2+Dx+Ey+F=0(D2+E2-4F>0)所表示的曲线关于直线y=x对称,那么必有( )
A. D=E
B. D=F
C. E=F
D. D=E=F
答案
曲线关于直线y=x对称,就是圆心坐标在直线y=x上,圆的方程x2+y2+Dx+Ey+F=0(D2+E2-4F>0)中,D=E.
故选A.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点