设a,b属于全体实数a^2+2b^2=6,则a+b的最小值是?

设a,b属于全体实数a^2+2b^2=6,则a+b的最小值是?

题目
设a,b属于全体实数a^2+2b^2=6,则a+b的最小值是?
答案
令x=a+b
b=x-a
所以a²+2(x-a)²=6
3a²-4ax+2x²-6=0
a是实数则方程有解
所以判别式大一等于0
16x²-24x²+72>=0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.