已知数列(an)通项公式an=(6n)-5(n为奇数)an=2^n(n为偶数),求(an)的前n项和和Sn.

已知数列(an)通项公式an=(6n)-5(n为奇数)an=2^n(n为偶数),求(an)的前n项和和Sn.

题目
已知数列(an)通项公式an=(6n)-5(n为奇数)an=2^n(n为偶数),求(an)的前n项和和Sn.
答案
数列{An}的通项公式为An=6n-5 ,n为奇数 An=4^n , n为偶数.求此数列前n项和Sn.即奇偶数各占一半,有: n为奇数时,A1=1,A3=13,A5=25……,此数列以12为公差的等差数列,前n/2项和为:n/2 * A1+n(n-1)/2 * 12 = 3n^2/2-5n/...
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.