求极限lim(n→∞)sin√(n^2+1)π.可以直接lim(n→∞)sin√(n^2+1)π=sinlim(n→∞)√(n^2+1)π=sinnπ=0吗?

求极限lim(n→∞)sin√(n^2+1)π.可以直接lim(n→∞)sin√(n^2+1)π=sinlim(n→∞)√(n^2+1)π=sinnπ=0吗?

题目
求极限lim(n→∞)sin√(n^2+1)π.可以直接lim(n→∞)sin√(n^2+1)π=sinlim(n→∞)√(n^2+1)π=sinnπ=0吗?
答案
不能.
lim(n→∞)sin√(n^2+1)π
=lim(n→∞)[(-1)^n]sin[√(n^2+1)-n]π
=lim(n→∞)[(-1)^n]sin1/[√(n^2+1)+n]π
=0
这样才是对的.不能直接把极限符号放进去~
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.