已知f(x)=8x²-6x+2k+1 (1)若f(x)=0的两个实数根分别为三角形两内角的正弦值,求实数k的取值范

已知f(x)=8x²-6x+2k+1 (1)若f(x)=0的两个实数根分别为三角形两内角的正弦值,求实数k的取值范

题目
已知f(x)=8x²-6x+2k+1 (1)若f(x)=0的两个实数根分别为三角形两内角的正弦值,求实数k的取值范
(2)问是否存在实数k,使得方程f(X)=0的两个实数根是直角三角形两个内角(非直角)的正弦值.
答案
(1)由f(x)=8x²-6x+2k+1=0,
Δ=(-6)²-4×8×(2k+1)≥0,
k≤1/16,
由△ABC中∠A,∠B,∠C在0----180°,
∴0<sinA<1,0<sinB<1,0<sinC<1,
∴0<k≤1/16.
(2)设x1=sinA,x2=sinB(∠C=90°)
sinA+sinB=3/4(1)
sinA·sinB=(2k+1)/8(2)
由(1)sin²A+sin²B+2sinAsinB=9/16
其中sinB=cosA,代入:sin²A+cos²A+2sinAsinB=9/16,
1+(2k+1)/4=9/16
k=-11/8.
得:8x²-6x-7/4=0
32x²-24x-7=0,
x1=0.975,
x2=-0.225
不符题意(正弦函数锐角时大于0)
不存在K.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.