我想问下关于离散数学的对称与反对称还有自反的问题.
题目
我想问下关于离散数学的对称与反对称还有自反的问题.
首先3个关系的定义我知道.
如果有以下几个集合
R1{(1.1)(2.2)(3.3)}
R2{(1.1)(1.2)(2.1)(2.2)}
R3{(1.2)(2.3)(31)}
我知道 R1是自反的
R3是反对称的
根据对称与反对称的定义.
如果{(a,b)属于R}那么蕴含{(b,a),属于R} 这个是对称的定义
如果{(a,b)属于R}并且{(ba),属于R} 那么蕴含a=b.
根据对称的定义 那么R1应该是自反同时是对称的.
但根据反对称定义.{(a,b)属于R}并且{(b,a),属于R} 那么蕴含a=b.那么R1即是自反同时又是对称的再又是反对称的.存在这种关系吗?
如果R1是反对称的 那么R2为什么又是对称的?难不成集合里可以有即是对称又是反对称的关系?
答案
对的,有既对称又反对称的关系.你的结论都是对的.如果这三个关系都是集合X={1,2,3}上的关系,则:
R1满足自反、对称、反对称(R1还满足传递)
R2满足对称(R2还满足传递)
R3满足反对称(R1还满足反自反、传递)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点