如图,在长方形ABCD中,将△ABC沿AC对折至△AEC位置,CE与AD交于点F. (1)试说明:AF=FC; (2)如果AB=3,BC=4,求AF的长.
题目
如图,在长方形ABCD中,将△ABC沿AC对折至△AEC位置,CE与AD交于点F.
(1)试说明:AF=FC;
(2)如果AB=3,BC=4,求AF的长.
答案
(1)证明:∵将△ABC沿AC对折至△AEC位置,
∴∠ACB=∠ACE,
又∵在矩形ABCD中,AD∥BC,
∴∠ACB=∠DAC,
∴∠DAC=∠ACE,
∴AF=CF;
(2)设AF=x,则DF=4-x,CF=AF=x,
在直角△CDF中,∵∠D=90°,
∴CF
2=CD
2+DF
2,即x
2=9+(4-x)
2,
解得:x=
,
即AF的长为
.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点