定义:如果函数y=f(x)在定义域内给定区间[a,b]上存在x0(a<x0<b),满足f(x0)=f(b)−f(a)b−a,则称函数y=f(x)是[a,b]上的“平均值函数”,x0是它的一个均值点.如

定义:如果函数y=f(x)在定义域内给定区间[a,b]上存在x0(a<x0<b),满足f(x0)=f(b)−f(a)b−a,则称函数y=f(x)是[a,b]上的“平均值函数”,x0是它的一个均值点.如

题目
定义:如果函数y=f(x)在定义域内给定区间[a,b]上存在x0(a<x0<b),满足f(x0)=
f(b)−f(a)
b−a
答案
(1)由定义可知,关于x的方程-x2+4x=
f(9)−f(0)
9−0
在(0,9)内有实数根时,
函数f(x)=-x2+4x在区间[0,9]上是平均值函数.
解-x2+4x=
f(9)−f(0)
9−0
⇒x2-4x-5=0,可得x=5,x=-1.
又-1∉(0,9),
∴x=5,
所以函数f(x)=-x2+4x在区间[0,9]上是平均值函数,5是它的均值点.
(2)∵函数f(x)=-x2+mx+1是区间[-1,1]上的平均值函数,
∴关于x的方程-x2+mx+1=
f(1)−f(−1)
1−(−1)
在(-1,1)内有实数根.
由-x2+mx+1=
f(1)−f(−1)
1−(−1)
⇒x2-mx+m-1=0,解得x=m-1,x=1.
又1∉(-1,1)
∴x=m-1必为均值点,即-1<m-1<1⇒0<m<2.
∴所求实数m的取值范围是0<m<2.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.