已知平面α∩平面β=L,点A∈α,点B∈β,A∉L,B∉L.求证L与AB是异面直线.

已知平面α∩平面β=L,点A∈α,点B∈β,A∉L,B∉L.求证L与AB是异面直线.

题目
已知平面α∩平面β=L,点A∈α,点B∈β,A∉L,B∉L.求证L与AB是异面直线.
答案
假设L与AB不是异面直线,
那么它们在同一个平面上,记这个平面为p.
∵A和L都在p上,∴由它们决定的平面α在平面p上,
∴平面p=平面a.同理p=平面β.
∴α=β,∵A∈α,∴A∈β,
所以A在α与β的交线L上,矛盾.
∴假设不成立,
∴L与AB是异面直线.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.