设函数f(x)=ln(1+x)-2x/(x+2),

设函数f(x)=ln(1+x)-2x/(x+2),

题目
设函数f(x)=ln(1+x)-2x/(x+2),
(1)证明:当x>0时,f(x)>0
(2)从编号1到100的100张卡片中每次随机抽取一张,然后放回,用这种方式连续抽取20次,设抽到的20个号码互不相同的概率为P,证明:P
答案
f(x)=ln(1+x)-2x/(x+2)
f'(x)=1/(1+x)-4/(x+2)^2=x^2/[(1+x)(x+2)^2)
当x>0时,f'(x)>0
即x>0时,f(x)是增函数.
∵f(0)=0
∴当x>0时,f(x)>0
第一次抽到任意牌,第二次抽到与第一次不同的牌的概率是(1-1/100),第三次抽到与第一、二次不同的牌的概率是(1-2/100),.,第二十次抽到与前十九次不同的牌的概率是(1-19/100)
这二十次都抽到不同牌的概率是
P=1*(1-1/100)(1-2/100).(1-19/100)=0.99*0.98*0.97.*0.81
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.