关于线性代数的问题 求3阶矩阵 A = 1 0 0,0 1 0,0 0 1 的特征值 特征向量 求详细过程,谢谢!

关于线性代数的问题 求3阶矩阵 A = 1 0 0,0 1 0,0 0 1 的特征值 特征向量 求详细过程,谢谢!

题目
关于线性代数的问题 求3阶矩阵 A = 1 0 0,0 1 0,0 0 1 的特征值 特征向量 求详细过程,谢谢!
答案
|A-λE| = (1-λ)^3.
所以 A的特征值为 1,1,1
对应的特征向量为 c1(1,0,0)^T+c2(0,1,0)^T+c3(0,0,1)^T,
其中c1,c2,c3 为不全为0的任意常数
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.