抛物线X*X=-2py(p>0)上各点与直线3x+4y-8=0的最短距离为1,则p=?

抛物线X*X=-2py(p>0)上各点与直线3x+4y-8=0的最短距离为1,则p=?

题目
抛物线X*X=-2py(p>0)上各点与直线3x+4y-8=0的最短距离为1,则p=?
答案
设与已知直线平行且与抛物线相切的直线为:3x+4y+m=0则有:
1=|-8-m|/5 所以m=-3或-13(舍去,可作图验证)
即所求直线方程为3x+4y-3=0
将它与抛物线方程联立得
2x^2-3px+3p=0
利用判别式等0得 p=8/3
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.