已知函数f(x)=【1-4/(2a^x+a)】(a>0且a不等于1)是定义在R上的奇函数
题目
已知函数f(x)=【1-4/(2a^x+a)】(a>0且a不等于1)是定义在R上的奇函数
(1)求a的值 (2)当X属于(0,1>时tF(x)>=2^x-2恒成立,求实数t的取值范围
我做的时候 是先讨论了题干中的区间 把分母除到不等式的右边 然后求导 算MAX 作出T大于等于3
因为是奇函数 还有对称区间 我也是这么做的
THANKS
答案
1.因为f(x)定义在R上的奇函数
所以f(0)=0
则a=2
2.
所以 f(x) = 1 - 2/(2^x + 1)
因为 2^x >0 ,所以 2^x + 1 >1,
所以 0<2/(2^x + 1)<2
所以 0>- 2/(2^x + 1)>-2
所以 1>1 - 2/(2^x + 1)>-1
因此 值域 为 (-1,1)
f(x) = 1 - 2/(2^x + 1) = (2^x-1)/(2^x+1)
tf(x)≥2^x-2 即 t(2^x-1)/(2^x+1)≥2^x-2
即 t ≥(2^x+1)(2^x-2)/(2^x-1)
=[(2^x-1)^2 + (2^x-1) - 2]/(2^x-1)
=(2^x-1) + 1 - 2/(2^x-1)
要想恒成立,即要比它的最大值大.
在当x属于(0,1],(2^x-1)为增函数,- 2/(2^x-1),也为增函数,所以 (2^x-1) + 1 - 2/(2^x-1) 为增函数,所以 当 x = 1时 为最大值
此时 = 2 - 1 + 1 - 2/(2 - 1) = 0
所以只需 t > 0 即可
所以 t 的范围 为 (0,+∞ )
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点
- 姿态万千造句,
- 在等腰三角形ABC中,AB=AC,CG是AB的高,取一直角三角板,将其直角顶点E放在AB与AC上,使其一直角边与AB或AC重合,另一直角边交BC于点D,过点D做一腰的垂线,垂足为F.当点D在BC的延长
- I want to have some cakes a moment ago改错
- 请写出所有三个字母的英文单词
- 病人体温情况折线统计图中在37摄氏度中标的虚线是什么?
- 有关奉献的名言警句
- noise 的音标
- a×4分之3=5分之2×b=3分之1÷c 则a与b成()比例,a与c成()比例,b与c成()比例 最好把比例式写出来.
- 蒹葭这首诗采用重章叠句的手法有何好处
- 三角形ABC中,BD平分角ABC,过点D作BC的平行线DE,叫交AB于E,若AB=8,AE=5,求DE的长