已知M(4,0),N(1,0)若动点P满足向量MN向量MP=6丨NP丨
题目
已知M(4,0),N(1,0)若动点P满足向量MN向量MP=6丨NP丨
(1)求动点P的轨迹C的方程
(2)设Q是曲线C上任意一点,求Q到直线l;x+2y-12=0的距离的最小值
答案
(1)设 P(x,y),则 MN=(-3,0),MP=(x-4,y),NP=(x-1,y),
由 MN*MP=6|NP| 得 -3(x-4)=6√[(x-1)^2+y^2] ,
化简得 x^2/4+y^2/3=1 .
(2)设 Q(2cosa,√3sina),则 Q 到直线 L 的距离为
d=|2cosa+2√3sina-12|/√5=[12-4sin(a+π/6)]/√5 ,
因此最小值为 (12-4)/√5=8√5/5 .
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点
- 一个酱油瓶,瓶身呈圆柱形,容积为750毫升.瓶子里有大半瓶酱油.当瓶子正放时,瓶内酱油液面高14厘米;
- 已知某温度下nacl饱和溶液的溶解度为S g,密度为p g/cm,求该溶液的物质的量浓度
- 如图21所示为高压锅的示意图,锅盖上有一个空心柱为排气孔,空心柱上戴有一个“帽子”为限压阀
- 要写大队干演讲稿,有什么名言可以用?(顺便帮忙:怎么写演讲稿?一分钟的.)
- 翻译下The challenge set by Bill Gates was to come up with a latrine whicx01h works without running wate
- new image international limited是什么意思
- 在一个圆内画一个最大的正方形,正方形的面积是ac㎡,圆的面积是多少 求公式
- 由三棱柱 四棱柱 五棱柱的面数 顶点数 棱数来探索规律
- 一个数由4个一、8个十分之一和4个百分之一组成,这个数是_,保留一位小数约是_.
- 已知关于x的方程x^2-2x+(3k^2-9k)/(x^2-2x-2k)=3-2k有四个不同的实数根,求k的取值范围