已知:如图,在平面直角坐标系xOy中,一次函数y=-2x+4的图象分别与x、y轴交于点A、B,点P在x轴上,若S△ABP=6,求直线PB的函数解析式.
题目
已知:如图,在平面直角坐标系xOy中,一次函数y=-2x+4的图象分别与x、y轴交于点A、B,点P在x轴上,若S
△ABP=6,求直线PB的函数解析式.
答案
令y=0,得x=2,
∴A点坐标为(2,0),
令x=0,得y=4,
∴B点坐标为(0,4),
∵S
△ABP=6,
∴
×AP×4=6即AP=3,
∴P点的坐标分别为P
1(-1,0)或P
2(5,0),
设直线PB的函数解析式为y=kx+b,
∴
或
,
∴
或
,
∴直线PB的函数解析式为y=4x+4或
y=-x+4.
根据题意可得P点可在x轴左边或x轴右边,先求出A和B的坐标然后根据S△ABP=6可确定P的位置,进而运用待定系数法可求出直线PB的函数解析式.
待定系数法求一次函数解析式.
本题考查待定系数法的运用,综合性较强,解答此类题目的关键是根据三角形面积的关系求出P点的坐标,继而利用待定系数法求解.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点