已知对于任意正整数n,都有a1+a2+…+an=n3,则1/a2−1+1/a3−1+…+1/a100−1=_.

已知对于任意正整数n,都有a1+a2+…+an=n3,则1/a2−1+1/a3−1+…+1/a100−1=_.

题目
已知对于任意正整数n,都有a1+a2+…+an=n3,则
1
a
答案
∵当n≥2时,有a1+a2+…+an-1+an=n3,a1+a2+…+an-1=(n-1)3,两式相减,得an=3n2-3n+1,
1
an−1
=
1
3n(n−1)
=
1
3
1
n−1
-
1
n
),
1
a2−1
+
1
a3−1
+…+
1
a100−1

=
1
3
(1-
1
2
)+
1
3
1
2
-
1
3
)+…+
1
3
1
99
-
1
100
),
=
1
3
(1-
1
100
),
=
33
100

故答案为:
33
100
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.