设函数f(x)=2sin(πx/2+π/5),若对任意x∈R都有f(x1)≤f(x)≤f(x2)成立,则|x1-x2|的最小值为

设函数f(x)=2sin(πx/2+π/5),若对任意x∈R都有f(x1)≤f(x)≤f(x2)成立,则|x1-x2|的最小值为

题目
设函数f(x)=2sin(πx/2+π/5),若对任意x∈R都有f(x1)≤f(x)≤f(x2)成立,则|x1-x2|的最小值为
答案
对任意x∈R都有f(x1)≤f(x)≤f(x2)成立所以f(x1)是最小值,f(x2)是最大值所以f(x1)=-2f(x2)=2所以πx1/2+π/5=2kπ-π/2πx2/2+π/5=2mπ+π/2x1=4k-7/5x2=4m+3/5|x1-x2|=|4(k-m)-2|k-m是整数所以|x1-x2|最小=2...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.