如图,AC平分∠BAD,CE⊥AB,且2AE=AB+AD.那么∠ADC与∠ABC的关系是_.

如图,AC平分∠BAD,CE⊥AB,且2AE=AB+AD.那么∠ADC与∠ABC的关系是_.

题目
如图,AC平分∠BAD,CE⊥AB,且2AE=AB+AD.那么∠ADC与∠ABC的关系是______.
答案
∠ADC+∠ABC=180°,
理由是:过C作CF⊥AD交AD延长线于F,
∵CE⊥AB,AC平分∠BAD,
∴CE=CF,∠CEA=∠F=∠BEC=90°,∠EAC=∠FAC,
在△AEC和△AFC中,
∠EAC=∠FAC
AC=AC
∠AEC=∠F

∴△AEC≌△AFC(ASA),
∴AE=AF,
∵2AE=AB+AD,
∴AE+AF=AB+AD=AE+BE+AF-DF,
∴BE=DF,
在△BEC和△DFC中,
BE=DF
∠BEC=∠F
CE=CF

∴△BEC≌△DFC(SAS),
∴∠B=∠CDF,
∵∠ADC+∠CDF=180°,
∴∠ADC+∠ABC=180°,
故答案为:∠ADC+∠ABC=180°.
过C作CF⊥AD交AD延长线于F,根据角平分线性质得出CE=CF,证△AEC≌△AFC,推出AE=AF,求出BE=DF,证△BEC≌△DFC,推出∠=∠CDF即可.

全等三角形的判定与性质;角平分线的性质.

本题考查了角平分线性质和全等三角形的性质和判定的应用,主要考查学生的推理能力.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.