在三角型ABC中.若sinA=2sinB*cosC,sin^2A=sin^2B+sin2^C则三角形ABC是什么三角型?

在三角型ABC中.若sinA=2sinB*cosC,sin^2A=sin^2B+sin2^C则三角形ABC是什么三角型?

题目
在三角型ABC中.若sinA=2sinB*cosC,sin^2A=sin^2B+sin2^C则三角形ABC是什么三角型?
答案
首先由条件sinA平方=sinB平方+sinC平方 及正弦定理及勾股定理可推得A=90°,再根据另一条件知△ABC必定是特殊的直角三角形.
由sinA平方=sinB平方+sinC平方,利用正弦定理得a^2 = b^2+ c^2,(a^2表示a的平方)
故△ABC是直角三角形,且∠A=90°,
∴B+C=90°,B=90°-C,
∴sinB=cosC,
∴由sinA=2sinB cosC可得:1=2sin2B,
∴sinB2 =1/2 ,sinB=根号2/2 ,
∴B=45°.
∴△ABC是等腰直角三角形
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.