设a1,a2,a3,b均为n维非零列向量,a1,a2,a3线性无关且b与a1,a2,a3分别正交,试证明a1,a2,a3.b线性无关

设a1,a2,a3,b均为n维非零列向量,a1,a2,a3线性无关且b与a1,a2,a3分别正交,试证明a1,a2,a3.b线性无关

题目
设a1,a2,a3,b均为n维非零列向量,a1,a2,a3线性无关且b与a1,a2,a3分别正交,试证明a1,a2,a3.b线性无关
答案
令 kb+k1a1+k2a2+k3a3=0
两边用b做内积,得k[b,b]+k1[b,a1]+k2[b,a2]+k3[b,a3]=0
因为b与a1,a2,a3分别正交,故[b,a1]=[b,a2]=[b,a3]=0
所以 k[b,b]=0,b≠0,所以k=0
从而k1a1+k2a2+k3a3=0
而a1,a2,a3线性无关,所以k1=k2=k3=0
所以a1,a2,a3.b线性无关.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.