如图,在△ABC中,∠ACB=90°,AC=BC,AE是BC的中线,过点C作CF⊥AE于F,过B作BD⊥CB交CF的延长线于点D. (1)求证:AE=CD; (2)若BD=5cm,求AC的长.
题目
如图,在△ABC中,∠ACB=90°,AC=BC,AE是BC的中线,过点C作CF⊥AE于F,过B作BD⊥CB交CF的延长线于点D.
(1)求证:AE=CD;
(2)若BD=5cm,求AC的长.
答案
(1)证明:∵DB⊥BC,CF⊥AE,
∴∠DCB+∠D=∠DCB+∠AEC=90°.
∴∠D=∠AEC.
在△DBC和△ECA中,
∴△DBC≌△ECA(AAS),
∴AE=CD;
(2)∵△DBC≌△ECA,
∴BD=CE,
∵AE是BC边上的中线,
∴BC=2CE=2BD=10cm,
∴AC=BC=10cm.
(1)先证出∠D=∠AEC,再利用AAS证出△DBC≌△ECA,即可得出AE=CD;
(2)先根据△DBC≌△ECA,得出BD=CE,再根据AE是BC边上的中线,得出BC,最后根据AC=BC即可得出答案.
全等三角形的判定与性质.
此题考查了全等三角形的性质与判定,用到的知识点是三角形的中线、全等三角形的判定与性质、余角的性质,关键是在较复杂的图形中找出全等的三角形,利用AAS证出△DBC≌△ECA.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点