已知y=f(x)在定义域(-1,1)上是减函数,其图象关于原点对称,且f(1-a)+f(1-2a)<0,则a的取值范围是_.
题目
已知y=f(x)在定义域(-1,1)上是减函数,其图象关于原点对称,且f(1-a)+f(1-2a)<0,则a的取值范围是______.
答案
∵y=f(x)在定义域(-1,1)上,其图象关于原点对称,
∴函数f(x)是奇函数.
∵f(1-a)+f(1-2a)<0,
∴f(1-a)<-f(1-2a)=f(2a-1),
又y=f(x)在定义域(-1,1)上是减函数,
∴1>1-a>2a-1>-1,
解得
0<a<.
∴a的取值范围是
0<a<.
故答案是:
(0,).
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点