已知 xyz+xy+yz+zx+x+y+z=1975 求满足等式的自然数x,y,z
题目
已知 xyz+xy+yz+zx+x+y+z=1975 求满足等式的自然数x,y,z
麻烦啦
xyz+xy+yz+zx+x+y+z= (xyz + xy) + (yz + y) + (zx + x) + z
= xy(z + 1) + y(z + 1) + x(z + 1) + z
= (z + 1)(xy + y + x + 1)+1
= (z + 1)(x + 1)(y + 1)+1
= 1975
因此 4*2*247=1976
回答者:chsm4113 - 部门总裁 十二级 2009-11-6 23:28 的朋友,你的答案中貌似缺少了+1的这个哦,可能漏掉了吧,
答案
xyz+xy+yz+zx+x+y+z= (xyz + xy) + (yz + y) + (zx + x) + z= xy(z + 1) + y(z + 1) + x(z + 1) + z= (z + 1)(xy + y + x + 1)= (z + 1)(x + 1)(y + 1) = 1975 = 5*5*79所以,是4,4,78
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点