随机地投掷4颗骰子,则其中有两颗骰子所示数字之和为9的概率为多少
题目
随机地投掷4颗骰子,则其中有两颗骰子所示数字之和为9的概率为多少
最好能写出思路,我会提高悬赏的
答案
楼上的算错了,有重复的
从反面考虑,即考虑任何两个骰子所示数字之和都不为9有多少种情况
由于1,2与1,2,3,4,5,6中的任何数相加都不为9,故称1,2为“安全数”,3,4,5,6为“不安全数”
分以下几种情况讨论:
(1)4个骰子都为“安全数”,有2^4=16种情况
(2)3个骰子为“安全数”,另一个骰子为“不安全数”,这是符合要求的.计算此种条件下的情况数可分步计算:第一步确定为“不安全数”的骰子,有C(4,1)=4种情况;第二步确定每个骰子的点数,有4×2×2×2=32种情况.于是此种条件共包含4×32=128种情况
(3)2个骰子为“安全数”,另两个骰子为“不安全数”.此种情况要求为“不安全数”的两个骰子点数不为3+6,4+5,5+4,6+3这4种组合.类似(2)的分析,此种条件包含C(4,2)×2×2×(4×4-4)=288种情况
(4)仅1个骰子“安全数”.假设为“不安全数”的两个骰子为甲乙丙,按顺序确定点数:甲有4种选择,设甲为3,那么乙就只有3种选择(不能为6),若乙也为3,丙就有3种选择;若乙未4或5,丙就只有2种选择,于是甲乙丙的点数有4×(1×3+2×2)=28种选择.类似(2)(3)的分析,此种条件下有C(4,3)×2×28=224种情况
(5)4个骰子都为“不安全数”设4个骰子为甲乙丙丁,按顺序确定点数:甲有4种选择,设甲为3,那么乙可为3,4,5.当乙为3时,丙可为3,4,5,且丙为3时丁有3种选择;丙为4或5时丁有2种选择.当乙为4或5时,丙有两种选择,且必与甲乙中的一个相同,那么丁就有2种选择.综上所述,此种条件有4×(1×(1×3+2×2)+2×2×2)=60种情况
综上所述,任何两个骰子所示数字之和都不为9的情况有16+128+288+224+60=716
情况总数为6^4=1296,故有两颗骰子所示数字之和为9得情况有1296-716=580种
所求概率为580/1296=145/324
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点
- 求一求极限题的解答过程
- 求导数:(1)y=x(x^2+1/x+1/x^3)
- good,you,is,will,when,stress,the,gone,fell!组成句子
- 某汽车以20m/s的速度行驶,司机突然发现前方34m处有危险,采取制动措施.若汽车制动后做匀减速直线运动,产生的最大加速度大小为10m/s2,为保证安全,司机从发现危险到采取制动措施的
- 若不等式组x≥0y≥0y≤−kx+4k表示的区域面积为S,则 (1)当S=2时,k=_; (2)当k>1时,kS/k−1的最小值为_.
- 有关描写节日的古诗(至少两首)
- 求y=-arctan(2x-1)的反函数
- 已知函数f(x)=(2x+1)/(x+2)(x不等于2,x∈R),数列{an}满足a1=t(t不等于-2,t∈R), a(n+1)=f(an)(n∈N)
- 试问:这个可怜的小虫子是否能够爬到绳子 的那一端?这是一道数学题,要具体过程.
- 最后把“?”拉直变成“!”,找到了真理.