求函数y=√2sin(2x-π)cos[2(x+π)]的单调区间
题目
求函数y=√2sin(2x-π)cos[2(x+π)]的单调区间
答案
∵y=-√2sin(π-2x)cos(2π+2x)=-√2sin2xcos2x=-(√2/2)sin4x.
∴当2kπ-π/2<4x≦2kπ+π/2时,y单调递增,
当2kπ+π-π/2<4x≦2kπ+π+π/2时,y单调递减.
由2kπ-π/2<4x≦2kπ+π/2,得:kπ/2-π/8<x≦kπ/2+π/8.
由2kπ+π-π/2<4x≦2kπ+π+π/2,得:kπ/2+π/8<x≦kπ/2+3π/8.
∴原函数的单调递增区间是(kπ/2-π/8,kπ/2+π/8],
单调递减区间是(kπ/2+π/8,kπ/2+3π/8].其中k为整数.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点