证明,对任意正整数n,方程x^n+x=1有且只有一正根Xn,且当n趋于无穷时Xn=1

证明,对任意正整数n,方程x^n+x=1有且只有一正根Xn,且当n趋于无穷时Xn=1

题目
证明,对任意正整数n,方程x^n+x=1有且只有一正根Xn,且当n趋于无穷时Xn=1
答案
令f(x)=x^n+x-1.
f'(x)=n*(x)^(n-1)+1,
当n为奇数时,f'(x)>0,显然有f(x)为单调函数,又f(0)=-1,f(0)0.所以必然存在一正根xn,
当n为偶数时,f'(x)=n*(x)^(n-1)+1,有极小值f(xk),当xk=(-1/n)^(1/(n-1)),极小值左边单调递减,右边单调递增,的确,此时有当limx--> (正负)∞,f(x)>0.f(0)=-1,f(0)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.