已知:如图,AD是Rt△ABC的角平分线,AD的垂直平分线EF交CB的延长线于点F,求证:FD2=FB•FC.

已知:如图,AD是Rt△ABC的角平分线,AD的垂直平分线EF交CB的延长线于点F,求证:FD2=FB•FC.

题目
已知:如图,AD是Rt△ABC的角平分线,AD的垂直平分线EF交CB的延长线于点F,求证:FD2=FB•FC.
答案
证明:连接AF,
∵EF是AD的垂直平分线,
∴AF=DF,
∴∠FAE=∠FDE,
∵∠FAE=∠FAB+∠BAD,∠FDE=∠C+∠CAD,且∠BAD=∠CAD,
∴∠FAB=∠C,
∵∠AFB是公共角,
∴△AFB∽△CFA,
AF
FC
FB
AF

∴FA2=FB•FC,
即FD2=FB•FC.
首先连接AF,可证得△AFC∽△BFA,然后由相似三角形的对应边成比例证得FA2=FB•FC,则可得FD2=FB•FC.

相似三角形的判定与性质.

此题考查了相似三角形的判定与性质,线段垂直平分线的性质以及角平分线的定义.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.